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Abstract— Ground Reaction Forces (GRF) are exerted by a
surface as a reaction to a person standing, walking or running on
the ground. In elite and recreational sports, GRFs are measured
and studied to facilitate performance improvement and enhance
injury management. Although, GRFs can be measured accurately
using force platforms, such a hardware can only operate in
a constrained laboratory environment and hence may limit
and potentially alter a subject’s natural walking or runnin g
pattern. Alternatively, a system that can measure GRFs in a
more natural environment with less constraints can provide
valuable insights of how humans move naturally given different
gait patterns, terrain conditions and shoe types. In this regard,
inertial Micro-Electrical-Mechanical-Sensors (MEMS), such as
accelerometers and gyroscopes, are a promising alternative to
laboratory constrained data collection systems. Kinematics of
various body parts, such as their accelerations and angular
velocities, can be quantified by attaching these sensors at points
of interest on human body.

In this paper, we investigate the relationship between the
vertical GRF peaks measured by an OR6 series AMTI force plate,
and accelerations along the tibial axis measured by a MEMS
sensor. Our measuring system consists of two low-power wireless
inertial units (ViPerform), containing one tri-axis accelerometer
placed on the medial tibia of each leg. We investigate the accuracy
of the measured and estimated GRF peak in3 subjects, by means
of the Root Mean Square Error (RMSE). The RMSE achieved
across the speeds of6, 9, 12, 15, 18, 21km/h and sprinting were
157 and 151N , 106 and 153N , and 130 and 162N for the left
and right legs respectively for Subjects1, 2, and 3. We achieved
normalized errors of 6.1%, 5.9% and 5.4% for all the subjects.

I. I NTRODUCTION

Interpretation of human motion and gait patterns is
paramount to the understanding of risk of injury in elite
or recreational sports. Specifically in running, past studies
established the critical role of limb kinematics in risk of
injury or rehabilitation of injured players [1]. Gait patterns and
running strategies in different terrains across differentrunning
speeds are correlated with tibia injury [2]. Gait pattern in
running affects the ground reaction force (GRF) acting on the
body through the feet and the resulting tibial shock, i.e., the
impact force transmitted to the tibia [3].

Traditionally, GRFs in running are measured using force
platforms or plates mounted in the ground. Force plates may
also provide additional information such as balance, center of

pressure and similar biomechanics parameters for a subject[4].
While force plates accurately measure various features of
human locomotion including GRFs, their use is constrained
by a fixed laboratory setting, where subjects may not be
able to replicate their natural running patterns. In contrast,
an ambulatory system that provides accurate measurement
of GRF outside of the laboratory setting can produce better
insights into the natural running pattern of an individual.In this
paper, we introduce ViPerform [5], a fully ambulatory system
that uses inertial sensors placed on the tibia and accurately
measures the GRFs using tibial accelerations.

A number of previous studies investigated the correlation
between accelerations and GRFs when walking or running.
Early work by Lafortune et al [6] quantified tibial shock
during walking and running using the relationship between
the tibia axial acceleration(TAA) and GRFs. Authors reported
the first reliable TAA data and suggested a linear relationship
between peaks of differentiated GRF and TAA. A later study
by Lafortune et al [7], analyzed the GRF and TAA relation-
ship by means of a Fast-Fourier-Transform (FFT). Under the
assumption that the body behaved as a linear system, authors
re-estimated the TAA acceleration by using only part of the
main harmonics of a combined transfer function between GRF
peak and TAA. However, reported errors and large phase shifts
prevented this process from being reliably implemented [7].

Recent advancements in inertial micro-electrical-mechanical
(MEMS) sensors, such as accelerometers and gyroscopes, have
led to significant interest in their use for human biomechanics
tracking [8], [9]. Due to their small form factor and low-cost,
these devices can be comfortably worn on body, thus allowing
ambulatory monitoring of daily living activities outside the
laboratorial setting. In a recent work, Hunter et al [10] studied
the relationship between GRF impulse and sprint velocity in
athletes. This work revealed a non-linear relationship between
sprint velocity and also vertical and brake GRF impulse.
Daoud [11] studied TAA using MEMS sensors from runners
with Reverse-Strike (RS) or Heel-Strike (HS) running pattern,
while running bare-foot or with shoes. It was reported that
overall, lower limb compliance was a significant predictor of
higher GRF only in HS runners. A more recent experiment



Fig. 1. Subject wearing two ViPerform sensors on the tibia.

performed by Rowlands et al [12], showed that waist acceler-
ation showed positive correlation with GRF in activities such
as walking, jogging, running, jumps and box drops. However,
no estimation of GRF was reported by the authors.

Whilst previous studies compare and correlate GRFs with
accelerations of different parts of the body, few attempts have
been reported that directly estimated these forces based on
accelerations. In this paper, we report on the estimation of
GRFs using TAA measured by a low-power wireless inertial
system (ViPerform). We also investigate the effects of the body
mass in this estimation and correlate this in an experimental
protocol combining seven different speeds and three subjects.
We validate the accuracy of our system in comparison with
the gold standard AMTIOR6− 6 Series force plate.

The rest of this paper is arranged as follows: Section II
provides an overview of the Viperform system and the hard-
ware used; Section III describes the sensor and GRF data
processing flows, the body mass compensation and describes
the running protocol adopted by all subjects; Section IV and
V provide the experimental results and discussion respectively,
while the conclusions are summarized in Section VI.

II. SYSTEM OVERVIEW

A. Hardware

ViPerform consists of two measurement units and a base sta-
tion. Each unit comprises a3D Accelerometer,3D Gyroscope
and3D Magnetometer. In this study, only one low-power3D
accelerometer (ST MicroelectronicsLSM303DLHC[13]),
with a I2C serial interface digital output and full scale
acceleration input of±24g is used. For this application, each
unit samples accelerations at100, 20, 20Hz on the x-,y- and
z-axis respectively, and transmits the recordings throughone
nRF24AP2 Nordic Semiconductor [14] ANT wireless chip
to a base station. Data can be offloaded from the base station
for further off-line analysis on a PC.

B. Sensor Placement and Orientation

The two measurement units are placed on the legs along
the tibial axis in the mid point between the lower edge of
the medial malleolus and the medial joint line of the knee as
depicted in Figure 1. This method of placement has previously
been reported as a reliable landmark for measurements of tibial
accelerations [15], [16]. The base station is placed on the
left upper arm. In this paper, the sensor frame of reference
({x, y, z} in Figure 2) refers to the3D frame that moves
through space with the sensors. Accelerations along the tibial
axis are measured by the x-axis of the accelerometer, whereas
accelerations on the y- and z-axis represent measurements of
the anterior-posterior and medio-lateral planes respectively.

Fig. 2. Placement of ViPerform on the tibia.

III. E XPERIMENTAL METHODOLOGY

A. TAA Feature extraction

A typical TAA is represented in Figure 3 [15]. Four events
namely, Heel-Strike (HS), Initial Peak Acceleration (IPA),
Maximum Peak (MP) and Peak-to-Peak (Pk2Pk) were corre-
lated with the vertical GRF active peak. Figure 4 shows typical
vertical GRF traces from a force plate at three different speeds
of 6km/h, 15km/h and sprinting. As the speed increases, the
impact peak is reduced, whereas the active peak increases [3].

B. Linear and Logarithmic Approximations and Body mass
compensation

Data from peak vertical GRF and TAA at different running
speeds are plotted in a scatter plot for analysis. Linear and
logarithmic approximations are employed to assess correlation.
In addition, the relationship between the body mass and the
peak GRF is investigated.

0 10 20 30 40 50 60
−15

−10

−5

0

5

10

g

Heel Strike (HS) Maximum Peak (MP)

Initial Peak Acceleration (IPA)

Peak to Peak (Pk2Pk)

samples

Fig. 3. Typical TAA graph at the speed of15km/h.
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Fig. 4. Typical vertical GRF graph at the speed of15km/h.

C. Data Collection

All experiments were performed in the Biomechan-
ics Laboratory of Victoria University, Melbourne, Aus-
tralia. Sensor data was collected from three subjects with
no recorded lower limb disorders or running impair-
ments. All subjects gave verbal consent. Experiments con-
sisted of each subject performing a protocol of42 run-
ning trials, divided in blocks of approximate speeds of
6 km/h, 9 km/h, 12 km/h, 15 km/h, 18 km/h, 21 km/h
and sprinting. For each trial, each subject was instructed to run
through two speed towers at a nominated speed, with one prac-
tice run to judge the correct pace. In addition, subjects were
instructed to hit the force plate with their left and right legs
three times respectively to assess asymmetry variability [15]
and wireless link quality between the sensors and the base
station.

Video recording was employed to match the relevant ac-
celeration stride with the corresponding force plate data.Each
subject was instructed to stand still for ten seconds beforeeach
data collection.

D. Force Plate

An AMTI OR6 Series force plate [17] was employed to
validate the sensor signal. At the start of the protocol, each
subject was instructed to stand still for five seconds to calibrate
the recording trigger threshold of the force plate. Data was
sampled at300Hz and recorded without any filtering.

E. Accuracy Assessment

The quality of the GRF estimation was assessed by calculat-
ing the Root Mean Square Error (RMSE) of the GRFs recorded
by the force plate and those estimated by the ViPerform units.
It is defined as:

RMSE =

√

∑N

i=1(GRFS(i)−GRFFP (i))2

N
(1)

whereGRFS andGRFFP represent the sensor and force
plate GRFs andN the number of compared strides.

IV. EXPERIMENTAL RESULTS

A. Data Analysis

Table I shows that the measured walking and running speeds
for all subjects were close to the given target. Subjects1, 2 and

TABLE I
MEASURED RUNNING SPEEDS(KM /H)

Target Speed Subject#1 Subject#2 Subject#3 Average
6 6.0±0.11 6.1±0.03 6.3±0.11 6.1±0.13
9 9.3±0.04 9.1±0.08 9.0±0.13 9.±0.13
12 13.0±0.07 11.9±0.09 13.0±0.10 12.6±0.62
15 14.9±0.06 15.2±0.04 14.4±0.05 14.8±0.40
18 18.7±0.03 17.3±0.01 18.1±0.04 18.0±0.71
21 22.0±0.01 20.6±0.02 21.0±0.01 21.2±0.74

Sprint 25±0.01 27.1±0.02 25.3±0.04 25.8±1.11

3 walked at6.0, 6.1 and6.3km/h with low standard deviation
of 0.11, 0.03 and0.11km/h. Between the running speeds of
9 and21km/h, the largest error with respect the target speed
was 1.0km/h at 12km/h for Subjects1 and 3. The largest
standard deviation was0.13km/h for Subject3 at 9km/h.
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Fig. 5. Linear and Logarithmic approximations of accelerations at Heel
Strike (HS) and peak vertical GRF for Subject1.

Figure 5 shows the logarithmic and linear approximations
of Heel-StrikeHS acceleration points mapped to vertical GRF
active peaks. Accelerations between the speeds of9 and
21km/h ranged from0.8g to 4.5g, whilst for the walking
speed of6km/h, the averages are mapped from−0.5g and
−0.8g. The Logarithmic approach (depicted as the solid line
in Figure 5) shows a higher correlation (0.95) as compared to
the linear approach (0.81). We observed a similar correlation
pattern in mapping ofIPA , Pk2Pk andMP events to vertical
GRF. Therefore, we adopted the logarithmic approach and the
linear results are not reported in the rest of this paper. The
logarithmic function is defined as:

u = log2(acc+ b) (2)

whereacc is the acceleration at a specified event. The coeffi-
cient b is set to1 to avoid negative logarithmic numbers.

TABLE II
CORRELATION OFLOGARITHMIC FUNCTION BASED ONTAA FEATURES

Feature Subject#1 Subject#2 Subject#3
HS 0.88 0.76 0.84
IPA 0.83 0.87 0.88
MP 0.96 0.95 0.96

Pk2Pk 0.91 0.93 0.96

Table II lists the correlation between the log function of
Equation 2 and vertical GRFs atHS, IPA , Pk2Pk and MP
events. For all subjects, highest values of correlation between



GRF and the logarithmic function were found for theMP event
with correlation values of0.96, 0.95 and0.96 for subjects1,2,
and3, respectively. The lowest correlations were found at the
eventHS with correlations values of0.86, 0.76 and 0.84 for
the three subjects.
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Fig. 6. Logarithmic approximation of the Initial Peal Acceleration (IPA) and
peak vertical GRF for Subject1, 2 and3.
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Fig. 7. Logarithmic approximation of the maximum acceleration (MP) peaks
and peak vertical GRF for Subject1, 2 and3.

Figures 6 and 7 show scatter plots of the logarithmic
function for accelerations at events(IPA) and (MP) respec-
tively, and the corresponding vertical GRF peak for each
speed. It can be observed from Figure 6 that the data points
are non-uniformly distributed over the logarithmic estimation.
Subject3 (dotted line) showed a higher slope in his results in
comparison with Subjects1 and2. As the logarithmic function
employing theMP events shows the best overall correlation
with the vertical GRF, we restricted our investigation to this
method for the rest of this study.

We investigated the effect of body mass on the logarithmic
approximation based on maximum TAA peaks(MP). As
shown in Figure 7, slopes of the logarithmic approximation
are384.3N/log(g) 267.9N/log(g) and342.4N/log(g) while
offsets are1906N , 1281.5N and,1681N respectively, for the
three subjects. The slope and intercept values for left and right
leg GRFs as a function of body mass of each subject are shown
in Figure 8. In this figure, slope is represented on the y-axisas
coefficienta (left-hand pane) and offset as coefficientc (right-
hand pane). The empirical equations 3 and 4 that correlate the
body mass with the slope and intercept are defined below as:

a(m) = 4.66 ∗m− 76.6 (3)
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Fig. 8. Variation of the coefficient a and c as a function of the3 subjects.

c(m) = 24.98 ∗m− 566.83 (4)

wherem is the body mass.
Using the above equations, we extend our initial logarithmic

approximation function (Equation 2) with body mass compen-
sation as follows:

GRF (m) = a(m) ∗ log2(acc+ b) + c(m) (5)

wherem is the body mass and b is set empirically to1 and
acc is maximum TAA peak at eventMP.

B. Approximation Results

Bar graphs shown in Figure 9 shows the RMS errors across
3 different strides for each leg, when employing a linear
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Fig. 11. Prediction of GRF using tibial accelerations for the 3 subjects.

approximation. It can be observed that at6km/h, for the 3
subjects on both legs, the errors reached500N on average.
At the speeds9, 12, 15, 18, 21km/h, the errors increased from
50N reaching480N in average at the fastest speed. Both legs
showed similar results with a higher error in the walking speed
(6km/h) and at sprinting.

Figure 10 shows the RMSE errors based on the logarithmic
approach without body mass compensation. It can be observed
that for Subject3 (body mass90kg), the errors were found
at approximately100N when walking (6km/h) and between
100 to 400N as the speed increased. Larger errors were found
for subjects1 and2: approximately250N when walking for
both subjects on both legs, and reaching750N on the left leg
for Subject2. For subject1, the average approximation error
was400N , while errors tended to increase with faster speeds.

Finally, the estimation of peak vertical GRF for each subject
using the logarithmic approach with body mass compensation
(Equation 5) for left and right legs is shown in Figure 11.
The plots for subject2 show that for9− 21km/h speeds, the
peak accelerations mostly ranged from−1 to 10g on both legs,
while vertical GRF ranged from1500 to 2000N . For subject
3, the accelerations and GRF were distributed from2 to 7g and
1800N and3000N . Finally, the bar graphs in Figure 12 show
that the errors of the estimation for subjects1, 2 and3 on the
left and right legs were on average157N and 151N , 106N
and153N , and130 and162N respectively. Average error in
sprinting for all three subjects was approximately250N .

V. D ISCUSSION

Logarithmic approximation of GRF with body mass com-
pensation achieved an RMSE average of151N, 106N and
130N respectively, for the three subjects. The respective
normalized errors with respect to the peak GRF measured
by the force plate were6.1%, 5.9% and 5.4% on average
across all speeds, as observed in Figure 12. Results showed
that a logarithmic relationship between the peak vertical GRF
and the TAA performed better than a linear approximation.
This suggests a non-linear nature of the tibial accelerations
amplitudes at different running velocities. The same result
can be observed in Figure 9, where the errors at6km/h
for all subjects were considerably larger for all the speeds
in the linear case compared to the logarithmic approach. In
addition, when the subject ran at faster speeds, the linear
approximation showed increasing errors ranging from100N
to 500N correlated with the speeds.

The Maximum Peak (MP) event presented the highest
overall correlation values with vertical GRFs as shown in
Table II. It is hypothesized that theMP occurs close to the
mid-stance phase, where in running and walking speeds, it is
characterized by the maximum loading of body on the foot.
Hence, the maximum vertical GRF presents higher correlation
to the push-off onset acceleration of the leg. However, future
work using ViPerform sensors data synchronized with the
force plate data will investigate this aspect further.

Results in Figure 12 showed a large improvement of up to
75% by using a linear relationship between the body mass and
the slope (a), and the offset (c) of the logarithmic relationship.
For all subjects, average error reduction was30%. This result
is in agreement with the earlier studies that reported the body
mass as a relevant factor for measurements of GRFs [18].

In addition, the results showed in the scatter plots in Fig-
ure 7 revealed that the Subjects under similar running speeds
showed different peak accelerations. Subject2’s accelerations
had larger magnitudes although his GRF were lower when
compared to Subject1, where the accelerations were lower
with higher GRF. This suggests that although the subjects
showed different gait patterns and shoe types, the RMS errors
in the logarithmic estimation were reduced for the3 subjects
reaching an average of150N across all the running speeds.

No transformation to the global frame was performed [19]
suggesting that the gravitational component added in the
accelerometer frame had reduced effect on the amplitude of
the 4 events described in Figure 3. It is hypothesized that
it was added uniformly between Heel-Strike(HS) and Toe-
Off (TO), reaching its maximum projection at the mid-stance
phase, where the leg was geometrically perpendicular to the
ground. However, further research must ensure this.

Finally, negligible differences in the errors of the left and
right legs revealed that the base station placement on the
left upper arm was suitable to ensure adequate wireless link
quality. Further research will investigate the affect of sampling
frequency on estimation accuracy and ascertain if the sampling
frequency of100Hz is sufficient to collect the acceleration
signal signature at faster running speeds. Moreover, a larger
trial will be undertaken in future, involving more subjectsand
running speed variations to further strengthen the estimation
accuracy of our approach.

VI. CONCLUSION

In this paper, we discussed the use of a low-power wireless
system (ViPerform) employing one3D accelerometer as a
valid tool for GRF measurement. We assessed the effectiveness
of a non-linear approximation of GRFs using tibial axial
acceleration at different speeds. Our results also showed that
under kinetic and anatomical assumptions of the body, such
as the mass, our system showed good agreement with GRF
measured by a commercial force platform. This system can
thus be used in analysis of running patterns outside laboratory
settings and in runners’ natural environment.
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